-

器件封裝是高效散熱管理的關鍵
汽車行業發展創新突飛猛進,從底盤到動力總成,從信息娛樂系統到聯網和自動化系統,汽車設計的方方面面都有著日新月異的進步。然而,為人詬病的電動汽車(EV)充電用時問題(特別是在旅途中充電)帶來的巨大不便,阻礙了電動汽車的推廣普及,因此,車載充電器(OBC)設計或許將成為備受關注的領域。
2022-09-26
器件封裝 散熱管理
-

如何設計最安全的CAN總線拓撲?
CAN總線的應用越來越廣泛,工程師在各種不同工況下,如何選擇最合適的網絡拓撲方式呢?本篇文章將介紹主流的幾種總線拓撲方式,以及如何解決CAN總線故障。
2022-09-23
CAN總線 拓撲
-

整流電容濾波負載實例
六期連載,整流電路AC/DC變換應用非常廣泛,其中二極管整流在電機驅動中是主流的方案,而且功率范圍很廣,所以了解二極管整流工程設計非常重要。
2022-09-23
整流 電容濾波 負載
-

什么是雪崩失效
當向MOSFET施加高于絕對最大額定值BVDSS的電壓時,就會發生擊穿。當施加高于BVDSS的高電場時,自由電子被加速并帶有很大的能量。這會導致碰撞電離,從而產生電子-空穴對。這種電子-空穴對呈雪崩式增加的現象稱為“雪崩擊穿”。在這種雪崩擊穿期間,與 MOSFET內部二極管電流呈反方向流動的電流稱為“雪...
2022-09-22
MOSFET 失效機理 雪崩擊穿
-

電動汽車充電的三大設計注意事項
用于商業和住宅用途的典型電動汽車 (EV) 充電站設計包括電能計量、剩余電流檢測(交流和直流)、隔離安全合規性、繼電器和接觸器,還具有驅動功能、雙向通信以及服務和用戶界面。雖然充電站的目標是高效地將電力傳輸到車輛,但實現電力傳輸是其最初的功能。
2022-09-20
電動汽車 充電 設計
-

關斷柵極電壓欠沖對SiC MOSFET導通行為的影響
本文探討了關斷時發生的柵極電壓欠沖對導通開關特性的影響。這種影響來自于閾值電壓的遲滯效應,指柵偏壓變化時,閾值電壓的完全可恢復瞬態偏移。閾值電壓的遲滯效應是由半導體-絕緣體界面缺陷中,電荷的短期俘獲和釋放引起的。因此,關斷時的柵極電壓欠沖會對碳化硅(SiC)MOSFET的開關特性產生影響。
2022-09-20
柵極電壓欠沖 SiC MOSFET 導通
-

打破電動汽車“里程焦慮”,主驅能效如何升級?
因續航能力有限而導致的“里程焦慮”是許多消費者采用電動車的一個障礙。增加電池密度和提高能量轉換過程的效率是延長車輛續航能力以緩解這種焦慮的關鍵。能效至關重要的一個關鍵領域是主驅逆變器,它將直流電池電壓轉換為所需的交流驅動,以為電機供電。
2022-09-19
電動汽車 主驅能效
-

自動駕駛汽車的未來趨勢:集中式傳感器融合
現如今,大多數自動駕駛汽車都依靠傳感器融合,即將毫米波雷達、激光雷達和攝像頭的多傳感器數據以一定的準則進行分析和綜合來收集環境信息。正如自動駕駛汽車行業巨頭們所證明的那樣,多傳感器融合提高了自動駕駛汽車系統的性能,讓車輛出行更安全。
2022-09-19
自動駕駛 趨勢 傳感器
-

瑞薩電子發布全新Resolver 4.0目錄,提供80款市場成熟的電感式位置傳感器設計
2022 年 9 月 15 日,中國北京訊 - 全球半導體解決方案供應商瑞薩電子(TSE:6723)今日宣布,推出面向汽車和工業電機領域創新電感式位置傳感器的全新Resolver 4.0參考設計目錄。借助該目錄,工程師們現可擁有80款基于IPS2電機換向傳感器的即時設計資源,每款參考設計都針對獨特的電機軸或極對配置...
2022-09-16
瑞薩電子 電感式 位置傳感器
- 強強聯手!貿澤電子攜手ATI,為自動化產線注入核心部件
- 瞄準精準醫療,Nordic新型芯片讓可穿戴醫療設備設計更自由
- 信號切換全能手:Pickering 125系列提供了從直流到射頻的完整舌簧繼電器解決方案
- 射頻供電新突破:Flex發布兩款高效DC/DC轉換器,專攻微波與通信應用
- 電源架構革新:多通道PMIC并聯實現大電流輸出的設計秘籍
- 村田參展CES 2026
- 2025智能戒指排名前十選購指南:從健康監測到穿戴的全面解析
- 以 RK3506 為核:破解實時控制與系統適配難題
- DSP+DSA 架構革新:安謀 “周易” X3 NPU 的技術密鑰
- CC-Link IE TSN 認證落地,ADI 兩款芯片引領工業網絡融合
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall




